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Buoyancy-driven convection of water near its density maximum
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Abstract

Transient natural convection of cold water around its density maximum in a square cavity is studied numerically. Nine different posi-
tions of the active zones are considered. The governing equations are solved using Control volume method with power low scheme. The
results obtained for various values of parameters are presented graphically in the form of streamlines and isotherms. It is found that the
average Nusselt number behaves non-linearly as a function of Grashof number. The heat transfer rate is decreased in the density max-
imum regions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The buoyancy-driven convection in a fluid-filled cavity is
a topic of interest for many researchers, due to its wide
ranging of applications in cryogenic industry, cooling
problems, crystal growth techniques, space applications,
etc. Free convection arises in a fluid due to the density vari-
ations caused by the temperature differences of the system.
In most of the analysis pertaining to the convection of
water in enclosures, a linear temperature–density relation-
ship was taken. But in practice this will never happen as
the density of water varies with temperature in a nonlinear
fashion, attaining its maximum density around 4 �C.

Ho and Tu [1] experimentally and numerically investi-
gated the natural convection of water near its maximum
density at high Rayleigh numbers. They observed oscilla-
tory convection flow and temperature fields in the enclo-
sure and provide a good agreement with the measured
time period of the cyclic traveling wave motion of the
maximum density contour. Kandaswamy and Kumar [2]
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.08.013

* Corresponding author. Tel.: +91 422 2426764; fax: +91 422 2422387.
E-mail address: pgkswamy@yahoo.co.in (P. Kandaswamy).
studied the natural convection of water near its density
maximum in the presence of uniform magnetic field. They
observed that the effect of the magnetic field on the natural
convection is to inhibit the heat transfer rate. The effect of
density inversion on steady natural convection heat trans-
fer of cold water is studied by Lin and Nansteel [3]. They
found convection is reduced due to the density maximum.

Mahidjiba et al. [4] investigated onset of convection in a
horizontal anisotropic porous layer saturated with water
near 4 �C. It is found that the onset of motion dependent
permeability ratio and inversion parameter. Michalek
et al. [5] made a numerical benchmark study on natural
convection for anomalous density variation of water, and
compare performance of four different numerical methods.
Convection in water above ice penetrates into the stably
stratified region above the density maximum at 4 �C stud-
ied by Moore and Weiss [6]. They found steady convection
occurs at Rayleigh numbers below the critical value
predicted by linear theory. Pantokratoras [7] studied natu-
ral convection of water near the density extremum along a
vertical plate with sinusoidal surface temperature variation.
It is found that there is an inner boundary layer near the
plate with periodic characteristics. Tong and Koster [10]
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numerically studied transient natural convection of water
layer near its density maximum. The results illustrated that
the temperature difference which determines the position of
the maximum density plane in the water layer, can alter
flow field and heat transfer substantially.

Valencia and Frederick [11] studied natural convection
of air in square cavity with half-active and half insulated
vertical wall. Recently Sundaravadivelu and Kandaswamy
[9] derived a nonlinear 4th degree polynomial approxima-
tion for the density–temperature relation. In this paper
we study natural convection of water near its density max-
imum in a square cavity of partially heating vertical walls
using the above said nonlinear density–temperature
relation.
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Fig. 2. Average Nusselt number versus different grid sizes for middle–
middle heating location and Gr1 = 180,662.
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2. Mathematical formulation

Consider a two-dimensional square cavity of size L filled
with water as shown in Fig. 1. A portion of the left wall is
kept at a temperature hh and a portion of the right wall is
at temperature hc, with hh > hc, hc = 0 �C = 273 K. The
remaining portion of the cavity is insulated. Nine differ-
ent cases will be studied here. That is, the hot region is
located at the top, middle and bottom and the cold
region is moving from bottom to top of their respective
walls. The density of water behaves non-linearly as q ¼
q0 1�

P4
i¼1ð�1Þibiðh�hcÞi

h i
with b1 = 6.8143 � 10�5, b2 =

9.9901 � 10�6, b3 = 2.7217 � 10�7 and b4 = 6.7252 �
10�9. A typical density plot is provided in Fig. 3. It is clearly
seen from the figure our 4th order polynomial is agreed with
universal data. Under these assumptions the equations gov-
erning the motion of a two-dimensional viscous incom-
pressible fluid may be written in the vorticity–stream
function formulation as

of
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oY
¼ r2fþ

X4
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Fig. 1. Physical configuration.

Fig. 3. Density versus temperature.
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where

U ¼ � oW
oY

; V ¼ oW
oX

and f ¼ oU
oY
� oV

oX
: ð4Þ

The initial and boundary conditions in the dimension-
less form are:

s¼ 0; W¼ 0 T ¼ 0

s> 0; W¼ oW
oX ¼ 0 oT

oX ¼ 0 at X ¼ 0 and 1

T ¼ 1 hot part; T ¼ 0 cold part at Y ¼ 0 and 1
oT
on ¼ 0 elsewhere at Y ¼ 0 and 1

The nondimensional variables are s ¼ t
L2=m

; ðX ; Y Þ ¼
ðx;yÞ

L ; ðU ; V Þ ¼ ðu;vÞm=L ;W ¼
w
m ; f ¼ x

m=L2 ; T ¼ h�hc
hh�hc

.



Table 1
Calculated Grashof numbers for different hot wall temperatures

hh (K) Gr1 Gr2 Gr3 Gr4

277 180,662 105,944 11,545 1141
281 361,325 423,777 92,362 18,257
282 406,491 536,342 131,509 29,245
283 451,657 662,151 180,396 44,575
285 541,988 953,498 311,725 92,431
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The nondimensional parameters that appear in the
equations are, Gri ¼ gbiðhh�hcÞiL3

m2 i = 1,2,3,4 Grashof num-
bers and Pr ¼ m

a ¼ 13:67 Prandtl number, where g accelera-
tion due to gravity, a thermal diffusivity, b coefficient of
thermal expansion, m kinematic viscosity, W dimensionless
stream function, s dimensionless time, T dimensionless
temperature, U and V dimensionless velocity components,
X and Y dimensionless coordinates.

The local Nusselt number is defined by Nu ¼ oT
oY

��
y¼0

resulting in the average Nusselt number as Nu ¼
R

h NudX ;
where h is length of heating location.

3. Method of solution

The governing equations (1)–(4) were discretized using
the finite volume formulation, with power law scheme, Pat-
ankar [8]. The region of interest was covered with m verti-
cal and n horizontal uniformly spaced grid lines. The
numerical solution was true-transient and fully implicit.
At each time step the temperature and vorticity distribu-
tions were obtained from Eqs. (3) and (1) respectively.
The streamfunction distribution was obtained from Eq.
(2) by using successive over relaxation (SOR) and a known
vorticity distribution. The dimensionless time step which
yielded convergence for the majority of cases was
s = 10�4. An iterative process was employed to find the
streamfunction, vorticity and temperature fields. The pro-
cess was repeated until the following convergence criterion
was satisfied,

/nþ1ði; jÞ � /nði; jÞ
/nþ1ði; jÞ

����
���� 6 10�5: ð5Þ
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Fig. 4. (a) Unsteady state isotherms for top–bottom heating location and Gr1

and Gr1 = 541,988.
The overall Nusselt number was also used to develop an
understanding of what grid fineness is necessary for accu-
rate numerical simulations. The numerical solution were
done for different grid system from 21 � 21 to 101 � 101.
After 41 � 41 grids, there is no considerable change in
average Nusselt number, see Fig. 2. So 41 � 41 grid is used
to find solutions for different parameters because of a grid
containing 41 � 41 meshes yields satisfactory results.
4. Results and discussion

Numerical solutions for Grashof numbers provided in
Table 1 that correspond to the cavity width 6 cm and hot
wall temperatures between 277 K and 285 K are obtained
and presented in the form of isotherms, streamlines and
average Nusselt number. Fig. 4(a) and (b) illustrates the
transient results of isotherms and streamlines for heating
location top–bottom and Gr1 = 541,988, Gr2 = 953,498,
Gr3 = 311,725 and Gr4 = 92,431. In the beginning, a small
amount of fluid near the heating location is activated. A
small anticlockwise vortex appears near the heating loca-
tion. For s = 0.01, the isotherms are almost parallel lines.
)  ( iv )    ( v )
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= 541,988. (b) Unsteady state streamlines for top–bottom heating location
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Fig. 5. (a) Unsteady state isotherms for middle–middle heating location and Gr1 = 541,988. (b) Unsteady state streamlines for middle–middle heating
location and Gr1 = 541,988.
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They indicate conduction mode of heat transfer. An exist-
ing small counter clockwise rotating vortex grows in its size
and expands a bit away from heating location and then
exists a small clockwise cell due to density inversion of
water. At time s = 0.05, both vortex grows in its size. Fur-
ther for increase in time s = 0.2 convection starts and
   ( ii )  ( iii 
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Fig. 6. (a) Unsteady state isotherms for bottom–top heating location and Gr1 =
and Gr1 = 541,988.
buoyancy-driven flow throughout the enclosure is invigo-
rated. At s = 0.5, it is evidently clear from the isotherms,
the convection mode heat transfer dominates. The clock-
wise rotating cell grows, strengthens and suppresses its
counterpart. Major portion of the cavity is occupied by
clockwise rotating cell.
)   ( iv )   ( v )   
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541,988. (b) Unsteady state streamlines for bottom–top heating location
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Fig. 7. (a) Steady state isotherms for top–bottom heating location. (b) Steady state streamlines for top–bottom heating location.
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Transient results for different Grashof numbers and the
middle–middle heating location are displayed in Figs. 5(a)
and (b). At s = 0.001, one small buoyancy induced cell
exists. Increasing the time, the cell moves towards the cold
wall and one more buoyancy induced counter rotating cell
exists near hot wall due to maximum density effects. Fur-
ther increasing time, clockwise rotating vortex gains
strength and anticlockwise vortex weakens. At s = 0.3 con-
vection starts to dominate. The density of isotherms devel-
oping at the hot wall is higher than that at the cold wall. At
s = 0.5, hot cell becomes large and cold cell shrinks its size
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Fig. 8. Average Nusselt number versus Grashof number.
because cells are separated by the W = 0 plane at all times.
The convective flow generated at the hot wall dominates
the flow field all the time. The transient behaviour for dif-
ferent Grsahof numbers are displayed in Figs. 6(a) and (b).
The same behaviour is observed as in the previous cases.
The convection is weak due to infavorable buoyancy force
because the heating location is at the bottom of the wall.

Figs. 7(a) and (b) show the heat and fluid flow pattern for
different Grashof numbers. For Gr1 = 180,662, 361,325,
406,491, 451,657 and 541,988 counter rotating eddies
appear inside the cavity with one primary eddy circulating
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Fig. 9. Time history of average Nusselt number for Gr1 = 451,657.
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Fig. 10. Vertical velocity profiles at mid-height for middle–middle heating
location.
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Fig. 12. Time dependent vertical velocity profile at Gr1 = 451,657.
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in counter clockwise direction near cold wall and secondary
eddy near the hot wall below the heating location. Due to
existence of counter rotating flow pattern, a transition from
convection to conduction type of heat transport is observed.
We observe that the hot wall vortices grow inside with
increasing Grashof numbers by suppressing their respective
cold wall vortices. Therefore the convection mode of heat
transfer is dominated within the enclosure.

Fig. 8 shows the average Nusselt number for different
heating locations. It is clearly seen from the figure the aver-
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Fig. 11. Time history of average Nusselt number for middle–middle
heating location.
age Nusselt number behaves non-linearly as a function of
Grashof numbers. At the density maximum region the heat
transfer rate is reduced after that it is increased gradually.
The heat transfer rate is enhanced when the heating loca-
tion is at middle for all values of Grashof numbers. It is
observed there is no considerable change in rate of heat
transfer for change the position of cold wall while hot part
is fixed. Fig. 9 shows the time history of the average Nus-
selt number for different Grashof numbers. As time evolves
the particles near the hot wall have higher temperature and
so the heat transfer rate starts decreasing then we get sud-
den fall in the values of average Nusselt number as seen to
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Fig. 13. Variation of the transient local Nusselt number with s at
Gr1 = 451,657.
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be constant. The middle hot wall heating gives the high
heat transfer rate among all three locations.

Fig. 10 shows the mid-height velocity profile for differ-
ent Grashof numbers and middle–middle heating location,
the velocity reaches its peak near the hot wall and increases
with Grashof numbers. To evaluate how the buoyancy
affects the heat transfer along the hot wall, average Nusselt
number is plotted as a function of Grashof number. First
the rate of heat transfer is decreased and after density max-
imum it is increases with Grashof number. It is seen from
Fig. 11 that the density inversion affects the natural convec-
tion and heat transfer. Fig. 12 shows the development of
transient velocity profiles. The velocity of the particle near
the heating location is increased with increasing time. The
variation of the transient local Nusselt number with time s
along the hot wall of the cavity at different positions X is
presented in Fig. 13. It is seen that immediately after the
process of the local Nusselt number decreases for a short
time and then reach the steady state value. For low values
of X, the local Nusselt number attains the maximum value.
Increase X, the local Nusselt number decreases upto a cer-
tain level and then increases for fixed value of Grashof
numbers.

5. Conclusion

It is found that the heat transfer rate is enhanced when
the heating location is at middle of the hot wall for all val-
ues of Grashof numbers. There is no considerable variation
on natural convection on changing the active zones of the
cold wall for fixed hot wall zones. The average Nusselt
number behaves non-linearly as a function of Grashof
number and heat transfer is reduced in the maximum den-
sity region. Increasing Grashof numbers decreases heat
transfer up to density maximum and then increases.
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